Business Intelligence Blogs

View blogs by industry experts on topics such as SSAS, SSIS, SSRS, Power BI, Performance Tuning, Azure, Big Data and much more! You can also sign up to post your own business intelligence blog.

«October 2015»

Data Warehouse from the Ground Up at SQL Saturday Orlando, FL on Oct. 10th

SQL Saturday #442SQL Saturday #442 is upon us and yours truly will be presenting in Orlando, Florida on October 10th alongside Mitchell Pearson (b|t). The session is scheduled at 10:35 AM and will last until 11:35 AM. I’m very excited to be presenting at SQL Saturday Orlando this year as it’ll be my first presenting this session in person and my first time speaking at SQL Saturday Orlando! If you haven’t registered yet for this event, you need to do that. This event will be top notch!

My session is called Designing a Data Warehouse from the Ground Up. What if you could approach any business process in your organization and quickly design an effective and optimal dimensional model using a standardized step-by-step method? In this session I’ll discuss the steps required to design a unified dimensional model that is optimized for reporting and follows widely accepted best practices. We’ll also discuss how the design of our dimensional model affects a SQL Server Analysis Services solution and how the choices we make during the data warehouse design phase can make or break our SSAS cubes. You may remember that I did this session a while back for Pragmatic Works via webinar. I’ll be doing the same session at SQL Saturday Orlando but on-prem! ;)

So get signed up for this event now! It’s only 11 days away!

Read more

Create Date Dimension with Fiscal and Time

Here are three scripts that create and Date and Time Dimension and can add the fiscal columns too. First run the Dim Date script first to create the DimDate table. Make sure you change the start date and end date on the script to your preference. Then run the add Fiscal Dates scripts to add the fiscal columns. Make sure you alter the Fiscal script to set the date offset amount. The comments in the script will help you with this.

This zip file contains three SQL scripts.

Create Dim Date

Create Dim Time

Add Fiscal Dates

These will create a Date Dimension table and allow you to run the add fiscal script to add the fiscal columns if you desire. The Create Dim Time will create a time dimension with every second of the day for those that need actual time analysis of your data.

Make sure you set the start date and end date in the create dim date script. Set the dateoffset in the fiscal script.

Download the script here:


Read more

Excel Tip #29: Forcing Slicers to Filter Each Other when Using CUBE Functions

As I mentioned in my original post, Exploring Excel 2013 as Microsoft’s BI Client, I will be posting tips regularly about using Excel 2013 and later.  Much of the content will be a result of my daily interactions with business users and other BI devs.  In order to not forget what I learn or discover, I write it down … here.  I hope you too will discover something new you can use.  Enjoy!


You have went to all the trouble to build out a good set of slicers which allow you to “drill” down to details based on selections. In my example, I have created a revenue distribution table using cube formulas such as:

=CUBEVALUE(“ThisWorkbookDataModel”,$B6, Slicer_Date, Slicer_RestaurantName, Slicer_Seat_Number, Slicer_TableNumber)


Each cell with data references all the slicers. When working with pivot tables or pivot charts, the slicers will hide values that have no matching reference. However, since we are using cube formulas the slicers have no ability to cross reference. For example, when I select a date and a table, I expect to see my seat list reduce in size, but it does not. All of my slicers are set up to hide options when data is available. There are two examples below. In the first, you can see that the seats are not filtered. However, this may be expected. In the second example, we filter a seat which should cause the tables to hide values and it does not work as expected either.



As you can see in the second example, we are able to select a seat that is either not related to the selected table or has no data on that date. Neither of these scenarios is user friendly and does not direct our users to see where the data matches.

Solving the Problem with a “Hidden” Pivot Table

To solve this issue, we are going to use a hidden pivot table. In most cases we would add this to a separate worksheet and then hide the sheet from the users. For sake of our example, I am going to put the pivot table in plain sight for the examples.

Step 1: Add a Pivot Table with the Same Connection as the Slicers

In order for this to work, you need to add a pivot table using the same connection you used with the slicers. The value you use in the pivot table, should only be “empty” or have no matches when that is the expected result. You want to make sure that you do not unintentionally filter out slicers when data exists. In my example, I will use the Total Ticket Amount as the value. That will cover my scenario. In most cases, I recommend looking for a count type valu

Read more

SELECT COUNT(*) vs COUNT(1) vs COUNT(ColumnName)

  • 14 September 2011
  • Author: BradSchacht
  • Number of views: 35000

What is the difference between COUNT(*), COUNT(1) and COUNT(ColumnName)? A mystery that will never be known… ok that was a lie, but the rest of this blog is not a lie, just to be clear.  :)

COUNT(*) – Number of records in the table regardless of NULL values and duplicates
COUNT(1) – Number of records in the table regardless of NULL values and duplicates **IMPORTANT NOTE: The 1 does NOT refer to an ordinal location of a column. This will not count the records in the first column of the table as COUNT(ColumnName) does.**
COUNT(ColumnName) or COUNT(ALL ColumnName) – Number of non-NULL values
COUNT(DISTINCT ColumnName) – Number of distinct non-NULL values

I ran counts on a pretty good size table of 13+ million records and came up with both COUNT(*) and COUNT(1) executing with the same CPU time and elapsed time. Occasionally COUNT(*) would have a higher CPU time and sometimes COUNT(1) would have a higher CPU time. But neither was drastically different from the other. In addition to the statistics from the run if you look at the execution plans for both of these two they will be the exact same, providing further evidence that they behave the same. So from what I can conclude and have read from other sources online they are both essentially the same thing.

Conclusion: COUNT(*) and COUNT(1) are the same.

From what I understand this MAY have been an issue with Oracle where the query engine would treat them different, but I can’t confirm that just thought I would toss it out there for argument sake. Those same sources also say that has been resolved and they both function the same now. Also note that COUNT_BIG works exactly the same as COUNT it just returns the value in the form of a big integer instead of a regular integer.

Rate this article:
No rating


Other posts by BradSchacht

Please login or register to post comments.